Department of Mathematics

MAL 111 (2012 September) Minor Test 1

Time: 1 hour Maximum Marks: 22

Instruction: 1. Every question is compulsory.

- 2. No marks will be awarded unless necessary arguments are provided.
- Suppose for each $n \in \mathbb{N}$, the subset A_n of \mathbb{C} is countable. Let $A = \bigcup_{i=1}^{\infty} A_i$. Recall (do not prove): "There is a surjective map $\psi : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$."

Use it to prove that A is countable. [3]

If A is a (Dedekind) cut containing 0 then define

$$-A := \{x - y : -x \in \mathbb{Q} \backslash A, y \in \mathbb{Q}, y > 0\}.$$

Let $P_r = \{x \in \mathbb{Q} : x < r\}$ for $r \in \mathbb{Q}$. Show that P_r is a cut and $-P_r = P_{-r}$ if r > 0. [2]

- Show that the intersection of any two open sets in a metric space is an open set. Produce an example to show that the intersection of infinitely many open sets is not necessarily open.
 - (4) Suppose V is the open interval (0,1). For each $n \in \mathbb{N}$, define the subset T_n of \mathbb{R}^2 by $T_n = \{\frac{1}{n}\} \times V$. Let $T = \bigcup_{n=1}^{\infty} T_n$. Determine (with appropriate arguments) T', \overline{T} , $\operatorname{Int} T$, $\operatorname{Ext} T$ and $\operatorname{Bd} T$ as a subset of the metric space \mathbb{R}^2 with usual metric.
 - (5) Let $X = \mathbb{R}$ be the metric space with the usual metric on \mathbb{R} . Let $Y = \mathbb{R}$ be the metric space with discrete metric on \mathbb{R} . Define the maps $f: X \to Y$ and $g: Y \to X$ by $f(x) = x \ \forall \ x \in X$ and $g(x) = x \ \forall \ x \in Y$. Determine (with appropriate arguments) whether f and g are continuous.
- (6) Define the metric d on $X = \{1/n : n \in \mathbb{N}\}$ by d(a,b) = |a-b|. Determine what are all open sets and closed sets in X.
- Show by using Nested Intervals Theorem that the closed interval [0, 1] is uncountable. [4]

:: END ::

 Θ 9nt $A = \Phi$